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Abstract
] - - . . 3 . . .
———~“Approximation methods tor the minimum average cost per unit time

problem with a controlled diffusion wdnl is treated. In order to

work with a bounded state space, ue—uew—tﬁﬁfreflecting diffusion

v

model of Strook and Varadﬁgg; although other models can also be

treated. The control problem is approximated by an average cost

per unit time problem for a Markov chain, and weak convergence
methods are used to show convergence of the minimum costs to that

for the optimal diffusion. The procedure is quite natural and al-

lows the approximation of many interesting functionals of the

optimal process.<%,

1. Introduction. In this paper, we develop an approximation and

computational approach to a particularly difficult class of sto-
The computational problem leads to the

castic control problems.
approximation of the original process and optimization problem by

an interesting and simpler sequence of processes and optimization

problems, which yields much information on the original optimal

process.
Let w(+-) denote an R¥-valued Wiener process, let % denote a

compact set and define the bounded and continuous functions

£(-,*): RE x % » R%; k(+,*): RE . x % > R; o(-): R » r X r

matrices. Let x(+) denote a non-anticipative solution to the

Ito equation

(1) dx = f(x,u)dt + o(x)dw,

is a non-anticipative (always with respect to w(*))
For typo-

where u(-.)

%ﬁ % -valued progressively measurable control function.
3 graphical simplicity we sometimes write Xg for x(s), etci.
s pDefine YY(-) by
t
Eg (2) YY(x) = Tim EZ = kix_,u.)ds,
:igl X t s" s
- f tro 0
4 u
g where Ex denotes the expectation when Xy = X and control uf(-)
™ is used.
H "
gs; We are interested in finding good approximations to the infimum
‘ .
: Y of Yu(x) over all controls u(.), and to the optimal control,
ﬁg and also other information concerning the optimal trajectory, in

cases where Yu(x) does not depend on the initial state x.
Furthermore, we want to be able to compute the approximation and
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methods.
A number of difficulties stand in *lie way of a practical computa-

tion. First, the state space B* of x(+) 1is unbounded and the

control problem (1) - (2) will have to be modified so that the

state space is bounded. This is a particularly ticklish point,

since we want a modification which yields usable information con-
In particular situations, a great
For definiteness, we

cerning the original problem.
deal of attention must be devoted to this.
use the bounded process defined in Section 4, although many others

Next, we have not assumed very much about the system

are possible.
then very little is known

(et S E Yu(') actually depends on ¥,
for many problems (perhaps the

about the problem. Fortunately,
u(*) which are

most important ones) we can restrict attention to
is a stationary process), or to the stationary

stationary (u(-)
Even then, the solution to

pure Markov case (where u, = u(xt)).
(1) may not be unique. In practical problems, it is often demanded

that the system have a certain robustness. Criteria such as (2) are
of interest when the system is to operate over a long period of
time, usually of uncertain duration and with an uncertain initial

It is usually desired that the control be stationary
in the class which

and the

condition.
pure Markov, and that for the controls wu(*)

are to be considered there be an invariant measure pu,
x(t) tend to u? as t +» @ for each x = X In

(e.g., Kushner [l]) one can restrict attention to
little is known about the continuous

measures of
certain cases
such controls. In general,
parameter problem, and many of the difficulties in the way of
establishing convergence of a computational procedure are due to

this. Also, it is usually hard to approximate problems over an

infinite time interval, unless the approximation and limit
Furthermore, the ergodic subsets for

processes are stationary.
In any case,

each approximation may depend on the approximation.
the procedures to be developed here are very natural, provide much
information, and do give the desired results under broad

conditions. We will later make an additional assumption on the

system.
Our approach follows the ideas in Kushner (2],

and DiMasi [4]. The problem (1), (2) is approximated by a control
problem on a Markov chain (with approximation parameter h), and
weak convergence methods are used to show that certain interpola-
tions of the sequence of approximating chains oonverge weakly to an

[3] and Kushner




Op.iwal process. The mothad viel s a arcat deal of information on
the optimal process; e.y., invari nt mearcures and joint distributions.
A formal dynamic programming approach to the optimization of (1),
(2) is given in Section 2, Section 3 argyues for a "computational
approximation® and a bounded state space. The actual form of the
bounded state space model, the Strook-vVaradhan model of a reflected
diffusion [5], is discussed in Section 4. This model is used partly
for the sake of specificity and partly because it allows us to
illustrate some interesting features of the weak convergence and
boundary time scaling. The actual discrete state model is developed
in Section 5 and Sections 6 and 7 give the weak convergence results.

2. A Dynamic Programming Sufficient Condition for
Optimality for (1), (2).
Let <Y denote the differential generator of (1):

2
e 3 d
<z = E f;(xqu) ool iéjaij(x) 0%,
afs) = gl-yol+)"'/2.

When evaluating &qu(-) at ;v for a C2(Rr) function E(:),

gt U= U Suppose that there is a Cz(Rr) function
V(+) and a constant Y such that

set x = x

(3) inf [£*V(x) + k(x,a) - Y] = 0,
Qe

where <% is now treated as a parametrized operator. If there

is a Borel function u(+) on RY such that « = U(x) minimizes

at x 1in (3) for each x € Rr, and to which there corresponds a i
process (1) such that Eiv(xt)/t + 0, then

— t |

(4a) Tw 1im 229 [ kix 5 a8

g & R fg 8 E

If, in addition, v(*) 1is any %-valued non-anticipative (w,t)

progressively measurable function (henceforth called a control)

corresponding to which there is a solution to (1), and if

L =V
: Exv(xt) + 0, then
- T = -
(4b) Y < lim = E [ k(x_,v_)ds, | o, | g
iR S s ! e |
tow 0 a8 ]
) |
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and u(+) is optima' " i+h resp ct t» =uch v(+) in the sense that
v < YV for any X, wither fi:ed »» random. Under u(-) or v(-:!',
(1) is homogeneous, but there is nof nncessarily a unique invariant
measure.

3. Bounded State Space Approximations. The approximation and

computational method developed in [2] is roughly as follows. Let
u(*) be fixed, and let it be a function only of the state x. We
derive a family (parametrized by h) of Markov chains. For fixed

u(+), the sequence of (suitable) continuous parameter interpola-
tions of the chains converge weakly to the solution to (1), as
h - 0, under broad conditions. For each h, we have a controlled
(indexed by wu(-)) family of Markov chains. Optimize, using the
appropriate Markov chain version of (2), and obtain the minimum
value function for each chain.As h + 0, the sequence of minimum
| values converges to the infimum, over a large class of comparison
; controls, of the value function of the original problem. Also,
| many properties of the approximations converge to similar
| properties of the limiting optimal process.

Since our interest is in feasible computations, as well as in
convergence, it is necessary that for each h the state space of
the approximating chain be finite. This requirement necessitates
revision of the original system (l). The following are among
several possibilities that can be dealt with.

(i) The state space may be naturally bounded, in that there
are bounded sets GO,Gl such that if Xq € GO’ then X, € Gl for
all t and &all wu(+).

(GAi) If % €.

0 0’
in Gl' for all h, under the optimizing controls.

then the approximating Markov chain remains

! (iii) Impulsive control terms ([2], Chapter 8) are added to the
cost function, such that the state is guaranteed to be "impulsively"

driven into GO' if it ever leaves Gl'

(iv) A bounded set G can be introduced, such that Xy is

not allowed to leave G = G + 3G. To guarantee this, a suitable

boundary process is introduced on 9G. ’

For concreteness in the development, a particular form of (iv)
will be dealt with. We let G be a hyper-rectangle and suppose |
that X, is reflected from 09G. A hyper-rectangle is chosen only ﬁ
to simplify the specification of the approximation on the boundary.

Any region for which a specification with the proper convergence
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piuperties exists can . hoson,

4. The Submartingale Problem of Strook «nd Varadhan [5] in G.

In order to assure ourselves that the reflection is well defined,

assume

(Al) for each i, aii(x) is strictly positive on the boundary

planes of G which are parallel to ({x: x; = 0},

where X, = ith component of x.

We introduce a boundary control and cost function. Let @b be
a compact set, and define the bounded continuous functions
Y(*,0): 3G X %) ~ R; kgl=s2): 86 % %, + R; p(+): 3G » [0,1].
Let the vector Y(x,a) with origin x point strictly interior
to C for each x € 3G and o € %,. For A CR', set

0
IA(x) = indicator of set {x: x € A}, let x(+) denote the generic
element of Cr[O,m) (Rr—valued continuous functions on [0,®)) as

well as the solution to (1). Hopefully, no confusion will arise.

Define Cg = C°[0,%) N {x(*): x, € T, all t < =} and
91 = o-algebra on Cé induced by the projections ke & % t. For

this reflecting diffusion,admissible controls wu(-) are %-valued
when the process state Xy €3G, and are ‘%0-valued when the process
state++xt € aG. For+ q(s,) € Cz'l(g X [0,®)) and admissible
u(+), define the function FS(-,-) on Cé[o,m) by

&

(5) F;(X(-).t) = q(xt,t) = q(xo,O) = Jol-g—g + L/'u]q(xs,S)IG(xs)ds.

For the moment, let u(:) depend only on the current state x.

Suppose that for some y € G, there is a measure P; on Cr such

G
P;{xO =y} =1 and for each q(:,*) 1in Cz’l(a x [0,»)) £for which

D(x)qt(x,t) + Y'(x,u(x))qx(x,t) >0 for all x € 3G, and all = > 0,

the process {F;(°,t),gat,P;} is a submartingale. Then P is
said to solve the submartingale problem for initial value y. If,

in the above, the vector y can be replaced by a measure V., on G,

u

and P_ {x

N €T} = vo(r) for each Borel set T, then PY is said

o 9 Yo

to solve the submartingale problem for initial measure VO'
If u(+) depends only on the current state x, then the solution

+
gz'l is the set of uniformly bounded continuous functions on

G * [0,7) whose derivatives up to second order in x and first
in t, are continuous and uniformly bounded.
++ and u, is ¥  measurable.




to the submartingale problem gives the desired reflected diffusiocn,
and Y(x,u(x)) 1is the average "direction of reflection" at x € 4G,

and pP(x) 1s a scale factor which determines the relative time that

x(+) spends on oG ([2]), (3], [5)). Since p(:) only affects the
time scale, and not the costs ([3], [2], Chapter 10), for our
modelling purpose it is sufficient to set p(x) = 1, which we will
do.

Let PY solve the submartingale problem. There is a non-
decreasing scalar valued process f(+*), which only increases when
X, € 3G, and is such that for the above q(:,*)

t
L o . s 1 ~
(6) Fq(x( ), &) fo[qs(xs,s> + ) (xs,us)qx(:\s,s)}duS

is a martingale (with respect to {P;,jzt}). Furthermore, there

. i +
is a standard Wiener process w(+*) such that under P;,

(x(+),u(*),u(+)) are non-anticipative with respect to w(+) and

WD ko
£ £

(7) X =S¥ * Jof(xs,us)IG(xs)ds + JOO(XS)IG(xs)dws
rt

+ JOIaG(xs)Y(xs,us)dus.

For the control problem, we may wish to deal with a larger class
of (admissible) controls than the stationary pure Markov class.
We can still speak of a solution to the submartingale problem, but

then the measure P; or P% must be defined on the appropriate
0
o-algebra on the product space of Cr and the path space for the

G
control process. If this extended submartingale problem has a

solution, then the non-decreasing process U (:) and Wiener process
w(*) will still exist and (6), (7) hold.

A modified control problem. Suppose that there is a solution to

the submartingale problem corresponding to admissible control
u(*), and initial condition y. Define Yu(y) now by
u - 1 _u « -
(8) YRy = ti: E Ey{fok(xs,us)IG(xs)ds + Joko(xs,us)IaG(xs)dus}.

+To construct the Wiener process w(+), we may have to augment the
probability space by adding an independent Wiener process.




Since P =1, we can set B The formal dynamic programmi..g

equation (3) is replaced by

inf [(£%V(x) + k(x,8) - Y] =0, x € G,
O E
(9) e
inf Peldx}yix.a) ko(x,a) Y B AL B,
ae% X
0
where V(-) is now assumed to be bounded. If there is a sclution

to the submartingale problem corresponding to admissible control
v(+*) and initial condition y, and also a smooth function V(-)

and constant Y solving (9), then
(10) ¥ < Y (y).

I1f there is a Borel admissible control u(°*) which attains the

infimum in (9), and for which the submartingale problem has a solu-
tion for each initial condition x, then Y = Y (y) and ua(-) is
optimal. We emphasize that although (9) will serve as the basis of

our approximation, it need not have a solution of any sort for our

method to be valued.

5. Discretization. There are a number of techniques for getting an

approximating sequence of Markov chain control problems with the
correct convergence properties. We use the method in [2] mainly
because it is relatively straightforward, fairly well understcod
and we can refer to existing results. The method is based.on a
finite difference approximation with difference interval h. A
particular (but natural) finite difference approximation to (9) 1is
used. It makes no difference whether or not (9) has a smooth solu-
tion, for the finite difference approximation is not used to
solve (9). After a suitable rearrangement, the coefficients of
certain terms in the finite difference approximation will be
transition probabilities for an approximating controlled Markov
chain. This is the only use to which (9) will be put. The method
gives us an approximating chain simply and automatically. A
detailed outline of the method and of some of the convergence
properties will be given, but many of the details which can be
found in the basic references (2], (3], [4] will be omitted.

Let e, = unit vector in ith coordinate direction, and assume for
convenience that each side of G is an integral multiple of h.




Lec Gh denote the finite difference grid on G, and set &G

h P
Eh - G, where Eh is the finite difference grid on G. Now, let
us discretize (9). On G, use the approximation
Vx'(x) - [V(x+eih) = Vilse) ] Al i yi(x,a) > 0
(11) v
in(x) + [Wix) = V(x—eih)]/h, if Y; (x,a) < 0.
In G, use the approximation
Vx;(x) > [V(x+e h) - v(x)]1/h, if £.(x,&) > 0
(12) j (x) ~ [V(x) - V(x~-e,h)]/h, if fj(x,u) &
Xy ;
\Y% (x) » [V(x+e.h) + V{x-e.h) - 2V(x)]/h2.
XX, i i
¥
The approximations for VY % (x), 1 # j, are long, and the reader
X; X

is referred to (2], Chapter 6.2 for one set of possibilities.
Simply to avoid writing these down here, we suppose that o(x)o'(x)
is diagonal. This assumption is not required by anything except
our current laziness. It does not affect the outcome, only the
precise form of the functions Qh(',°) and ph(-,-) introduced
below.

Define Qh(x,O),Ath(x) and §h(x) by

e o 2 A
Q (x,a) = h %-lfi(x,l)l + % ol (X}, X € G,
0, (x,a) = g lyi(x,a)! ;X € 3G,
Qh(x) = sup Qh(x,u),

U

(where & ranges over the appropriate set % or %),

Ath(x)

h/ah(x) on G,

2 = -
h /Qh(x) on Gy, »

Approximating the derivatives in (9) by (11)-(12) and rearranging
terms yields the following equation, where 7h and Vh(-) are
used to denote the solution to the discretized equation and we use

the definitions g (x) = max[g(x),0] and g (x) = max[0,-g(x)].

il




(13) hA® = inf (-0, (e, )V ) ¢ VP (xee h) (b (x,u) + 02 (x)/2)
weY ¢ 1 i i
+ hzk(x @) ] X € G
’ ’ hl
—h I = . h h Lot ) ,
Ry = jgé'[ Q) (x,8) V7 (x) + 'Z Vi(xte h) ¥ (x,a) + hky(x,a)],
e
0
NE SGh.
. h AR b h =
Define p (x,xieih,w) = (coefficient of V (xteih))/Qh(x),
ph(x,x!u) = (5h(x) = Qh(x,¢)]/6h(x). Divide (13) through by

Qy (x) and rearrange to get

(1) vRx) + e ) = inf [ § VP (xte, h)pM(x,xte.h|2)
oGEY et - 3
1 Vh(x)ph(x,x[a) + k(x,u)Ath(x)], e Gh’

and similarly for i x Hn 4G where % and k are replaced by

h'
ﬁko and kO’ resp. Define ph(x,yla) =@ foralils s vl —other
than y = x o©r Yy = x % eih for some i. Then {ph(x,y‘u), X
y € Eh} is a transition probability for a controlled Markov chain.

Let {&2} denote the random variables of the chain, and define

%(x) =% in G, and D) = %b on 96, and redefine ki(x,%)
to equal ko(x,a) for x € 6G. Then (1l4) can be rewritten in the
form

(15) . Vx) + el = ing [Eivh(eT) + kix,a)0tP(x)1, x € & -

+EU(x)
h

In (13)-(15), we supposed that Y is a constant. This is almost

equivalent to the assumption that there is only one recurrence
class for the chain under the optimal control. If there is more
than one recurrence class, the numerical problem is harder. Let us

henceforth assume

(A2) For_each small h and under each stationary pure Markov

control, there is only one recurrence class.

This assumption seems to hold in very many cases of practical
interest. It can be dispensed with, but then the problem of
actually solving (13)=-(15) is much harder. Under (A2), (15) can be
solved by either Howard's iteration in policy space for semi-Markov
processes, or by a version of the backward iteration method for the




average cost per unit time probilem (see, e.g., Schweitzer and
Federgruen [8], but adapted to a semi-Markov process mcdel). There

is an optimal stationary pure Markov control uh(-) for all small

h, it is the minimizer in (15), and it is optimal with respect to
all controls for the discrete problem. The "Semi-Markov" point will
be returned to below. The optimal solution is given in the first
line of (19).

Discussion of (l4). For vy ¢ Gh' we have for any stationary pure

Markov control wu(-)

bl St T . ; h
(16a) LY[;n+l - .18, =y, ul+) wused] = f(y,uly))at (y),
6L ¢ S heh ok
cov (g 1 = & 16, = ¥, ul+) wused] = o(y)o'(y)ot (y) +
+ o(Ath(y)), EEENE Gh'
BOE e GGh,
Bl = e Rl 3 Sa o)
Ey[5n+l ;n‘;F =y, u(*) wused] = yv(y,uly))dt (y),
(16b)
W B v : h
covy[”n+l Bl B = ¥y U ) used] = o(At (y))
These "infinitesimal" properties (derived in [2], [3]), together

with (15), suggest a close relation between the controlled chain,
and the controlled reflected diffusion.

These relations are brought out quite clearly when the chain is
suitably interpolated into a continuous parameter process, and (15),

(16) suggest several useful interpolations. First, wa note that

solving (15) is the only computation that need be done. Equation
Selsllo Ve

(15) is not quite the dynamic programming equation for the average
cost per unit time for the controlled chain {421, since Th has
a state dependent coefficient Ath('). However, it is the dynamic
programming equation for a semi-Markov process or, equivalently
for the types of continuous parameter interpolations which are
discussed below.

Let 7 denotesthe invariant measure which corresponds to the

optimal control. Henceforth, unless otherwise mentioned, {i?}

refers to the optimal chain, with initial measure ﬂh.
We now choose an interpolation method and show that the sequence

of interpoclated processes converges weakly to a solution to the
submartingale problem corresponding to some admissible control

— - L 7 M_J
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u(-), and that this solution is an optimal one, with cost rate
¥ = lim Y.
h+0
Either of the following two piecewise constant interpolations will

serve our purpose.

B e e

Interpolation 1. Define At (i?) = Ati, tn =N Ati. Define the
i=0
: -h .h -h heth :
semi~-Markov process & (+) by & (t) = 5, ©°n [tn,tn+l). This

interpolation was used in [2], [3].

h

Interpolation 2. Let & (-) denote the Markov jump process on
Eh defined by:
If éh(t) = y, then the average additional time spent in state y

before a jump is Ath(y), and P{next state = y'| current state = y;
= ph(y,y’iuh(y)). There is a slight ambiguity here since it is
possible that ph(y,yluh(y)) > 0. But, this should cause no con-
fusion - for it simply means that there is a jump of "zero"
magnitude. The average interjump times can be normalized to avoid
this, but it hardly seems worthwhile. Note that

P{jump in (t,e+alleP(e) = v} = (a/atf(y)) + o(a).

This interpolation is developed in Section 8 of [4].

Neither interpolation is always preferable to the other. Inter-
polation 2 could have been used in references (2], [3], but there.
did not seem to be a need for it then. There are advantages to
having an interpolation which is a continuous parameter Markov chain
in that certain concepts (such as stationarity) have a clearer
meaning; on the other hand it is sometimes preferable to work with
interpolation times that are deterministic functions of the current
state, since then there are fewer random variables to worry about.
The limiting processes (see Sections 6 and 7) are the same for both
interpolations. 1In Case 2, the average sojourn time in a state y
(before the next jump, whether of zero value or not) is Ath(y),
precisely the interpolation interval for Case 1. 1In both cases, the
time spent at a state y on the boundary (O(h), per sojourn) is

greater than time spent at a state y in G (O(hz) per sojourn,

h
unless there is the complete degeneracy o(y) = 0). This property

is a consequence of our definition of Ath(y) for y € aGh




(to correspond to P(y) = 1).
For either Interpolation 1 or 2,

(17) e j k(D u )ds/t,
g T dg B

where ug = uh(ég), and Ei indicates that uh is used. The in-

variant measure for either interpolation is uh, where

(18a) WPy = s/l st @) |
z |

|

Also, '
1

(18b) W= It ykty o). |
}' !

Equations (17) and (18) are not hard to verify. For example,
(18) follows from the ergodic theorems for Markov chains (see
Chung [6], Section 1.15, Theorems 1, 2, 37 see also [2],

! Chapter 6.8, for similar calculations). It can also be obtained
by direct verification of the Kolmogorov equation using the in-
variance of nh (- ) for the discrete parameter chain. To get (17)
write u? for u (5?) and use (15) and the same ergodic theorems
to get
n-1 n-1
(19) O | T L e T L Y
X gl LT i
n-® 1=20 1=0
n-1 n-1 !
= lim [Zk(i?,u?)&th/ }:AL};]
n i=0 i=0
(w.p.1)
g ;
= lim J kel uMas/e) = Lim Jk(i:,ug)ds/t
n 0 (w.p.1) ‘0
(wep.1) toeo
L0
= lim J Exk(é ,us)ds/t.
tro /0 =
Ssimilarly, the first limit in (19) equals
=h h h h
(20) o= Mk, nath /s I et
¥ Yy
5 h
; = I M ykty,dP ).
H v
!
i




Let v(+) denote a stationary pure Markov control. Then (15)
implies that (here At?,&? now refer to the variables under control

vi(=))  for any x

n-1
EY 3 ati(ER (e D)
(21) T < orim 320 B
Bk gV 7 ath
e T
1=0

The proof of optimality of uh(-) with respect to any control which
is not necessarily stationary pure Markov can be based on a method

of Ross [7] and is omitted.

6. Weak Convergence. We will work with Interpolation 2, since it

is a strictly stationary process. The method will be outlined, but
the proofs will be usually referred to when already available
elsewhere. So far, we have a sequence of stationary pure Markov
controls {uh(-)}, corresponding stationary continuous parameter

! =h X . h L
Markov chains {& (-)}, invariant measures {L }, and minimum costs

=)
{¥"}, where

= i WPk = I Pk on
yE,(Jh »_,’LCh
F L kg tyaa o)),
YL"Gh
and
t 1
> IGERRED: 1) Gt R0 .h LBk -h
(22) Yt=E [Jok(ss,us)IG(ss)ds ar foko(as,us)lac(»s)dS],
where Eh denotes the expectation under initial measure uh, and
1
we use ug = uh(SZ). We often write &h(s) as 5:, etc., for

typographical simplicity.
We obviously can write

(23) D o Fh + tI (&h)f(gh uh)ds
0 G'"’s 5. S

't
h Re 2l h h
v [ I (EDY(Euldds + BT (L) + By(t),




where
¢
h [ _h -h h 'k
B (t) = JOIG(QS)[dQ (s) - £(5_,u_)as],
Bh el = . Dy rag? - P, uMas)
0 0 ag‘~g ®s ’s’ s f

Denote the two integrals in (22) by Kh(t) and Kg(t), resp.,
and the first two integrals on the right side of (23) by Qh(t)

and Qg(t), resp,  Let pD™{0,~) denote the space of R" valued
functions on [0,®), continuous on the right and with left-hand

limits (Billingsley [9], Lindvall [10], Kushner [2], Chapter 2),

endowed with the Skorokhod topology. If a measure v induces a
process x?(-) with paths in Dm[O,w) w.p.l and {»n} s taght,
we abuse terminology and say that {Xn(-)} s Eight.  Tf iyn}

converges weakly to a measure Vv and VvV 1induces a process X(°)
with paths in Dm[O,m) w.p.l, we say that {xn(-)} converges
weakly to X(*). We occasionally use Skorokhod imbedding ([1l1],
Theorem 3.1.1, or [2], Chapter 2), which says that if Xn(-) + X («)
weakly in Dm[o,w), then there are processes i(-),ﬁn(-) with
paths in Dm[O,w) and which induce the same measures on Dm[o,u)
as do X(-),Xn(-), resp., and are such that in(-) = §(-) WDk
in the Skorokhod topology. Since all our limit processes will be
continuous w.p.l, this implies that ﬁn(t) > X(t), uniformly on
bounded intervals. Also, we omit the tilde ~ notation. The

following theorem follows from the results in [4], Section 8.

Theorem 1.* (s"(-), K7 (+), kD¢, BMy, BR(), Q") Ry =

- : BE -2 T :
{de=%}} s tight on D [0,%), and all limits have continuous

paths w.p.1l.

We will next characterize the limits of {Bh(-),Bg(-)}.

Let us choose a weakly convergent subsequence, also indexed
by h, and henceforth fixed. The subsequent results will not depend
upon the selected subsequence. Denote the limit by E{s), K(¢),
Ko(*)» B(+), Bg(+), Q(+), Qy(+) . By construction, B"(t) and

¥ G :
Theorem 1 does not require Al or A2 and holds whether the initial
conditions are random or not. It needs only the boundedness and

continuity of f,o,k,ko and Y. Also, uh can be replaced by any
pure Markov control.




Bh(-) are martingales (with resoz2ct to the v-algebras H: in-

0
duced by i:, s < t) and an easy calculation yields that

E supiBh(t)I2 < constant-hT.

S 8
Thus BO(~) is the zero process.
The quadratic variation of Bh(-) is

g S SR
JOL (aS)IG(»S)ds,
where Zh(x) i's suchl that 1t converges: to o(x)otiG): as h +.0,
unifermly dn | x, and sup E;Bh(t)i" < = for each £ > 0. Then
h

{!Bh(t)lz}} is uniformly integrable for each t. Let 4 _ denote
the c-algebra induced by {éS,B(s),K(s),Ko(s),O(s),Q(s), s < t}.
Let N, denote an € neighborhood of 08G. In [3], Lemma 1, it
is shown that for each real T > 0 there is a constant K such
that, for Interpolation 1 and small e >0
(24) ES JTIN‘(ig)IG(éh)ds < K &,

0, e
uniformly in wu,h (although u did not appear in the derivation,
only an upper bound to the values of the drift function £ was
used in the derivation). The result (24) depends only on the fact
that the component of the diffusion term o©(x)dw orthcgonal to the
boundary is uniformly non-degenerate on 4G; i.e. on (Al).
Estimate (24) also holds for Interpolation 2, and is crucial for
the rest of the development. It says that neither the approxima-
tions nor the limit can "linger" near (but not on) the bocundary.
In particular, it implies that the probability is zero that over
some subinterval of [0,T] the paths for the approximations will
be in N M G and the limit will be on &G.

Theorem 2. Assume Al. {B(t),_Q%} is a continuous martingale

i
with quadratic covariation onG(ES)o(ﬁs)G (& 4)ds.

Proof. The proof, using (24), follows similar calculations in [2],
i3}, [4}). Let qh(t) represent any of the vectors in ¢h(-)

(see Theorem 1), let n denote an arbitrary integer, t., i< n,
numbers less than or equal to t, let s > 0 and let g(+) denote




AT 50 I e

a continuous real valued function By weak convergence, Skorvokhod
imbedding and the uniform integrali.lity of {!Bh(t)]} for each ¢t,
the result (martingale property of Bh(-))

E'(q" (), 1 < n) B (ers) - BR0)] = 0
implies

Eg(q(t,), i < n)[B(t+s) - B(t)] = 0.
Also, the result

1
Ehg(qh(ti), i < n) (B t+s) - B

t 1
- (1 g™ MM as) = o
Jo G 's

by

5 5t 25 e ot
together with the weak convergence, Skorokhod imbedding and uniform

integrability of {|B(t)|%} and (24) implies that
Eg(q(ti). i < n) [(B(t+ts) - B(t)) (Blt+s) - B(t))"*

- | 1.6 )0 )e' (£ ))ds] = 0.
JO G S S

The arbitrariness of g(:), t, t + s, ti' i < n, and n dmply
the theorem. O E.Ds

We next need a representation for Q(-), QO(-), K(+) and KO{-).
It is easy to see that all these functions are absolutely continuous
with respect to Lebesgue measure. Thus, there are measurable (w,t)
functions q(-), EO(-), k() and FO(-) such that, for almost

alrl w,€,

t t_
f q(s)ds, Qo(t) f qO(s)ds

Q(t) = -
0 0
t_ (t__

K(t) = fok(s)ds, Ko(t) = JOko(s)ds.

+Actually, uniform integrability of {IBh(t)lz} (implied by
sup Eh,’Bh(t)!4 < » is not needed. Since B(*) is a square

integrable continuous martingale, its quadratic variation can he
obtained by a "localization" of the argument.




We can now proceed in two ways, 2ither working with generalized
random controls or by imposing a =onvexity condition and using an
implicit function theorem. We take the latter (and casier) approcach.

+ )
Theorem 3. Assume Al and A2. Let f,k,ko,Y,c be continuous and

lJet the sets f{f(x,&), kix,&), @ ¢ %} £ g(x,%) and {(y(x,%),

ko(x,d), o € @b} 2 go(x, @b) be convex for each x. Then there
is a control U(-)  with values ES in % when 55 © G and in
'%0 when és € 3G ‘and such that, for almost all w,t,

g : s - 9

= t(st,ut)IG(»t)

£q(8) = Y(;L,ut)lac(st)

k(t) = k(strut)IG(gt)

ko(t) = ko(;t'ut)ISG(gt)
Proof. Define g(t) = (f(t),k(t)) and Eo(u = (E,(t) k().

The proof uses the basic estimate (24) and the method of (2],

pp. 182=183. By (24) and [2], pp: 182-183; for almost all w,t

glt) € g, WIT ()

g

= € e ¢, Sl
O(L) go(*:tl kO)ISG(Qt/r
from which the result follows by the McShane-War field implicit
function theorem as in [2], Theorem 9.2.2. QB

Summing up the results of Theorems 1 to 3, we get the repre-
sentation (under Al and A2)
|

ILGEE u)ds + JOIPG(QS)x(gS,uS)ds + B(t),

t

(25) %=50*f
0

where B(t) 1is a continuous martingale with quadratic variation

t
fOIG(és)c(qs)O'(Es)ds.

*This control is also non-anticipative with respect to the w(*)
introduced below (25).




Also, there is a Wiener process w(*), with respect to which all the
other processes in (25) are non-anticipative and such that
'(t

B(t) = IC(;S)c(i”))dw(s). Obvicusly, by the weak convergence,

Jo

e - u : Sl
ig in G for all €. Let & denote the differential generator

associated with (25) in G. By a slight modification of the
argument associated with (40) and (4l1) in [3], we can show that
£(*) solves the sub-martingale problem.

Furthermore, £(°) 1is a stationary process. Let its invariant
h,
T &

measure be denoted by u, (which is the weak limit of ({u"}), and
let ¥ = lim Th. Then the distribution of &, is u. By (22),
h 3
(24),
= = (t ” rt 2
(26) Yt = B [| E_ (& )ki{c ,u )ds 4 I..(6 )k, (6 _,u_)ds].

Remarks. The limit process & (°) 1is stationary, as is the drift
f(-), but we have not been able to show that there is a Markc
(reflecting diffusion) process with the same distributicns. There
probably is such a Markov process, as there probably is a
stationary pure Markov control u(+) such that d(;t) = u(w,t)
w.p.l. In any case, our method gives much information on the
optimal process & (:); e.d., the multivariate distribituions of
£h(~) converge weakly to those of £(-), as do the distributions
of any bounded measurable functional F(éh(-)), s B S T O 1 R -
continuous v.p.l with the respect to the measure induced by & (°).
Indeed, one of the great advantages of the weak convergence method
is that it yields such information, in addition to approximations
to Y. Also, Y = average cost per unit time for £(+), and is the
limit of the average costs per unit time for the sequence of

approximations.

7. Optimality of the Limit ¢&(*). Being a limit of optimal

approximating preocesses, £ (+) 1is a good candidate for optimality
for the original optimization problem (with the reflected diffusiocon
model). Certain optimality properties are easy to show.

Theorem 4. Assume Al and A2. Let v(+) dencte a continuous

stationary pure Markov control, such that the corresponding re-

flecting diffusion Ev(-) is unique (in the weak sense) and has a




; : : v - v
unique invariant measure u . Then Y < Y (where we let the

initial measure be 25,

Proof. Let 52 and fh(—) denote the discretized and interpolated
processes, resp., corresponding to the fixed control wv(-). Then
the cost yv’h for the interpolated process is > Th by
cptimality of uh. Let “v,h denote any invariant measure foi
éh(-). Then {5“(-)} and the invariant measures (“v,n} converge
weakly to ;V(-) and Lv, resp., as h + 0 by arguments similar

to those in Theorems 1 to 2. The theorem follows from this and (24).
QR EcDE

Since we have not been able so far to prove that u(-) ts
stationary pure Markov, it would be nice to prove that uf-) L5
optimal with respect to a broader class of controls than those in
Theorem 4. The class can be broadened, but at the expense of con-
siderable terminology and detail. We refer the reader tc [2],
where broader classes of comparison controls are dealt with for a

number of other types of optimization problems.
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